Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Takashiro Akitsu* and Yasuaki Einaga

Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Correspondence e-mail:
akitsu@chem.keio.ac.jp

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.052$
$w R$ factor $=0.158$
Data-to-parameter ratio $=16.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
trans-Bis(4-aminopyridine- κN)bis(succinimidatoκN)copper(II) dihydrate

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, has its metal atom in a square-planar trans- $\left[\mathrm{CuN}_{4}\right]$ coordination environment; the $\mathrm{Cu}^{\mathrm{II}}$ atom lies on a center of symmetry. Both succinimidate and 4 -aminopyridine ligands behave as monodentate ligands, which coordinate through deprotonated imidate and pyridine (not amino) N atoms, respectively. The 4 -aminopyridine is the first ligand in such $\mathrm{Cu}^{\mathrm{II}}$ complexes containing two different N atoms to take potentially different coordination modes.

Comment

Recently, supramolecular self-assembling metal-organic frameworks of transition-metal complexes have been studied widely (Eddaoudi et al., 2001; Evans et al., 2002; Yaghi et al., 1998). In particular, rational design of crystals as well as molecular structures with anisotropy may be important fundamentals in the production of optical and electronic functional materials. It has been found that $\mathrm{Cu}^{\text {II }}$ complexes show flexible coordination geometries and electronic states (Hathaway \& Billing, 1970). We have reported that the tetragonal Jahn-Teller distortion can be affected by the external temperature or light irradiation for $\mathrm{Cu}^{\mathrm{II}}$ complexes with amine ligands (Akitsu \& Einaga, 2003). Succinimidate ligands give rise to square-planar CuN_{4} complexes, not only with four identical ligands (Akitsu, Komorita \& Urushiyama, 2001) but also with mixed ligands such as trans-forms with two succinimidate and two monodentate amine ligands (Akitsu,

The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) $-x,-y,-z$.]

Received 17 January 2006 Accepted 20 February 2006

Komorita \& Kushi, 2001). Furthermore, five-coordinate $\mathrm{CuN}_{4} \mathrm{O}$ or six-coordinate $\mathrm{CuN}_{4} \mathrm{O}_{2}$ square-bipyramidal chromophores have been reported for cis-forms with bidentate diimine (Akitsu et al., 1999) or bidentate amine (Akitsu \& Komorita, 2002). However, the related $\mathrm{Cu}^{\mathrm{II}}$ complexes with amine ligands containing two different coordinating N atoms have not been reported so far. Here, we report the crystal structure of the title compound, (I), incorporating 4-aminopyridine ligands with competitive amino and pyridine N -atom sites.

(I)

In (I) (Fig. 1), the Cu atom exists in a square-planar CuN_{4} coordination geometry; it lies on an inversion center. Both succinimidate and 4 -aminopyridine ligands behave as monodentate. The $\mathrm{Cu}-\mathrm{N}$ bond distances, the $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ bond angles, and other geometric parameters of the ligands (Table 1) are comparable to those of the analogous $\mathrm{Cu}^{\mathrm{II}}$ complexes with pyridine derivative ligands (Latavalya \& Taylor, 1975). The $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$ angle of $110.2(4)^{\circ}$ indicates the $s p^{2}$ character of the deprotonated N 1 atom; the $\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$ and $\mathrm{O} 2-\mathrm{C} 4-$ N 1 angles of 123.6 (4) and 124.6 (4) ${ }^{\circ}$, respectively, also reflect electron delocalization in the π-conjugated system, similar to the $\mathrm{Cu}^{\mathrm{II}}$ complexes with 5,5-diphenylhydantoinate ligands (Akitsu \& Einaga, 2004, 2005). The dihedral angle between the coordination plane $\left[\mathrm{Cu} 1 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{N} 1^{i} / \mathrm{N} 2^{\mathrm{i}}\right.$, symmetry code: (i) $-x,-y,-z]$ and the succinimidate five-membered ring ($\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 4$) is $80.2(2)^{\circ}$, and that between the coordination plane and the pyridine ring (N2/C5-C9) is $81.9(2)^{\circ}$. The dihedral angle between the succinimidate and pyridine rings is $85.0(2)^{\circ}$.

As seen from Fig. 1, there is a water molecule of crystallization (together with an inversion-related one) near the Cu complex to form the $\mathrm{O} 1 \cdots \mathrm{H} 3 E-\mathrm{O} 3-\mathrm{H} 3 F \cdots \mathrm{O} 2^{\mathrm{i}}$ hydrogenbonding linkage (Table 2). There are also $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds involving the amino groups.

Experimental

Treatment of copper(II) acetate ($0.226 \mathrm{~g}, 1.25 \mathrm{mmol}$), succinimide ($0.495 \mathrm{~g}, 5.00 \mathrm{mmol}$), and 4 -aminopyridine ($0.235 \mathrm{~g}, 2.50 \mathrm{mmol}$) in ethanol (50 ml) at 318 K for 2 h gave rise to a deep blue solution. Brown microcrystals (anhydrous) were obtained from the resulting
solution. Yield $0.0752 \mathrm{~g}(13.2 \%)$. IR (KBr): $1618 \mathrm{~cm}^{-1}$ (amide I). UV (reflectance spectra): $16700 \mathrm{~cm}^{-1}\left[s h, F\left(R_{d}\right)=1.44\right], 21000 \mathrm{~cm}^{-1}$ [$\left.F\left(R_{d}\right)=2.36\right]$. Anal. Found: C 44.42, H $5.12, \mathrm{~N} 17.21 \%$; calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{CuO}_{6}$: C 44.67 , H 5.00 , N 17.36%. m.p. 559 K (decomposition). Brown crystals of (I) suitable for X-ray analysis were obtained from a methanol solution over a period of several days. The water solvent molecules came from undried methanol.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$	$Z=1$
$M_{r}=483.98$	$D_{x}=1.521 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1} \overline{1}$	Mo $K \alpha$ radiation
$a=7.945(2) \AA$	Cell parameters from 20
$b=8.729(3) \AA$	reflections
$c=9.161(3) \AA$	$\theta=10.1-13.7^{\circ}$
$\alpha=65.04(2)^{\circ}$	$\mu=1.08 \mathrm{~mm}^{-1}$
$\beta=86.86(3)^{\circ}$	$T=297(2) \mathrm{K}$
$\gamma=67.59(2)^{\circ}$	Prism, brown
$V=528.2(3) \AA^{\circ}$	$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$
Data collection	
Rigaku AFC-7R diffractometer	$R_{\text {int }}=0.058$
$\omega-2 \theta$ scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: ψ scan	$h=-11 \rightarrow 10$
\quad (North et al., 1968$)$	$k=-11 \rightarrow 11$
$T_{\text {min }}=0.696, T_{\text {max }}=0.807$	$l=-4 \rightarrow 10$
2736 measured reflections	3 standard reflections
2430 independent reflections	every 150 reflections
1771 reflections with $I>2 \sigma(I)$	intensity decay: 0.4%

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0697 P)^{2}\right. \\
+0.554 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.58 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.54 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1

Selected geometric parameters ($\left(\AA{ }^{\circ}\right.$).

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.971(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.349(6)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.011(4)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.371(6)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.235(6)$	$\mathrm{N} 2-\mathrm{C} 5$	$1.339(6)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.214(6)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.342(6)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$89.93(14)$	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 9$	$116.2(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$110.2(4)$	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{Cu} 1$	$121.5(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	$127.0(3)$	$\mathrm{C} 9-\mathrm{N} 2-\mathrm{Cu} 1$	$122.0(3)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Cu} 1$	$122.8(3)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3E $\cdots \mathrm{O} 1$	$0.73(3)$	$2.13(2)$	$2.827(5)$	$161(2)$
O3-H3F \cdots O $^{\mathrm{i}}$	$0.79(3)$	$1.99(2)$	$2.770(7)$	$168(2)$
N3-H3C $\mathrm{O}^{\mathrm{iii}}$	0.86	2.20	$3.016(5)$	158
N3-H3D \cdots O3 $^{\text {iii }}$	0.86	2.08	$2.917(6)$	164

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x+1,-y-1,-z$; (iii) $x, y-1, z+1$.

The water H atoms were located in difference Fourier maps and their positions were refined with $U_{\text {iso }}=0.064 \AA^{2} . \mathrm{H}$ atoms bonded to C and N atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}=0.93-0.97$ and $0.86 \AA$, respectively, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software ; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

This work was supported by a Grant-in-Aid for the 21st Century COE program 'KEIO Life Conjugate Chemistry' from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors are grateful to Professor Tohru Yamada and Dr Taketo Ikeno (Keio University) for the use of the apparatus for differential scanning calorimetry measurements.

References

Akitsu, T. \& Einaga, Y. (2003). Bull. Chem. Soc. Jpn, 77, 763-764.
Akitsu, T. \& Einaga, Y. (2004). Acta Cryst. E60, m524-m526.
Akitsu, T. \& Einaga, Y. (2005). Acta Cryst. C61, m183-m186.
Akitsu, T. \& Komorita, S. (2002). Bull. Chem. Soc. Jpn, 75, 767-768.
Akitsu, T., Komorita, S. \& Kushi, Y. (1999). Bull. Chem. Soc. Jpn, 72, 447-454.
Akitsu, T., Komorita, S, \& Kushi, Y. (2001). Inorg. Chim. Acta, 315, 18-25.
Akitsu, T, Komorita, S. \& Urushiyama, A. (2001). Bull. Chem. Soc. Jpn, 74, 851-860.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. \& Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.
Evans, O. R. \& Lin, W. (2002). Acc. Chem. Res. 35, 511-522.
Hathaway, B. J. \& Billing, D. E. (1970). Coord. Chem. Rev. 5, 143-207.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Latavalya, N. \& Taylor, M. R. (1975). Cryst. Struct. Commun. 4, 163-166.
Molecular Structure Corporation (1989). TEXSAN. Version 1.11. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Yaghi, O. M., Li, H., Davis, C., Richardson, D. \& Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

